skip to main content


Search for: All records

Creators/Authors contains: "Ng, C. S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We consider the spectrum of eigenmodes in a stellar system dominated by gravitational forces in the limit of zero collisions. We show analytically and numerically using the Lenard–Bernstein collision operator that the Landau modes, which are not true eigenmodes in a strictly collisionless system (except for the Jeans unstable mode), become part of the true eigenmode spectrum in the limit of zero collisions. Under these conditions, the continuous spectrum of true eigenmodes in a collisionless system, also known as the Case–van Kampen modes, is eliminated. Furthermore, because the background distribution function in a weakly collisional system can exhibit significant deviations from a Maxwellian distribution function over long times, we show that the spectrum of Landau modes can change drastically even in the presence of slight deviations from a Maxwellian, primarily through the appearance of weakly damped modes that may be otherwise heavily damped for a Maxwellian distribution. Our results provide important insights for developing statistical theories to describe thermal fluctuations in a stellar system, which are currently a subject of great interest forN-body simulations as well as observations of gravitational systems.

     
    more » « less